图像处理之理解卷积

 

一:什么是卷积

离散卷积的数学公式可以表示为如下形式:

f(x) =  - 其中C(k)代表卷积操作数,g(i)代表样本数据, f(x)代表输出结果。

举例如下:

假设g(i)是一个一维的函数,而且代表的样本数为G = [1,2,3,4,5,6,7,8,9]

假设C(k)是一个一维的卷积操作数, 操作数为C=[-1,0,1]

则输出结果f(x)可以表示为 F=[1,2,2,2,2,2,2,2,1]  //边界数据未处理

 

以上只是一维的情况下,当对一幅二维数字图像加以卷积时,其数学意义可以解释如下:

源图像是作为输入源数据,处理以后要的图像是卷积输出结果,卷积操作数作为Filter

在XY两个方向上对源图像的每个像素点实施卷积操作。如图所示:

 

粉红色的方格每次在X/Y前进一个像素方格,就会产生一个新的输出像素,图中深蓝色的代

表要输出的像素方格,走完全部的像素方格,就得到了所有输出像素。

 

图中,粉红色的矩阵表示卷积操作数矩阵,黑色表示源图像– 每个方格代表一个像素点。

 

二:卷积在数字图像处理中应用

一副数字图像可以看作一个二维空间的离散函数可以表示为f(x, y), 假设有对于二维卷积操

作函数C(u, v) ,则会产生输出图像g(x, y) = f(x, y) *C(u,v), 利用卷积可以实现对图像模糊处理,边缘检测,产生轧花效果的图像。

 

一个简单的数字图像卷积处理流程可以如下:

1.      读取源图像像素

2.      应用卷积操作数矩阵产生目标图像

3.      对目标图像进行归一化处理

4.      处理边界像素

三:一个纯Java的卷积模糊图像效果

 

四:关键代码解释

 

完成对像素点RGB颜色的卷积计算代码如下:

// red color

out3DData[row][col][1] =in3DData[row][col][1] +

       in3DData[row-1][col][1] +

       in3DData[row+1][col][1] +

       in3DData[row][col-1][1] +

       in3DData[row-1][col-1][1] +

       in3DData[row+1][col-1][1] +

       in3DData[row][col+1][1] +

       in3DData[row-1][col+1][1] +

       in3DData[row+1][col+1][1];

             

// green color

out3DData[row][col][2] =in3DData[row][col][2] +

       in3DData[row-1][col][2] +

       in3DData[row+1][col][2] +

       in3DData[row][col-1][2] +

       in3DData[row-1][col-1][2] +

       in3DData[row+1][col-1][2] +

       in3DData[row][col+1][2] +

       in3DData[row-1][col+1][2] +

       in3DData[row+1][col+1][2];

             

// blue color

out3DData[row][col][3] =in3DData[row][col][3] +

       in3DData[row-1][col][3] +

       in3DData[row+1][col][3] +

       in3DData[row][col-1][3] +

       in3DData[row-1][col-1][3] +

       in3DData[row+1][col-1][3] +

       in3DData[row][col+1][3] +

       in3DData[row-1][col+1][3] +

       in3DData[row+1][col+1][3];

 

计算归一化因子以及对卷积结果归一化处理的代码如下:

// find the peak data frominput and output pixel data.

int inpeak = 0;

int outPeak = 0;

for(int row=0; row<srcH; row++) {

    for(int col=0; col<srcW; col++) {

       if(inpeak < in3DData[row][col][1]) {

           inpeak = in3DData[row][col][1];

       }

             

       if(inpeak < in3DData[row][col][2]) {

           inpeak = in3DData[row][col][2];

       }

             

       if(inpeak < in3DData[row][col][3]) {

           inpeak = in3DData[row][col][3];

       }

             

       if(outPeak < out3DData[row][col][1]) {

           outPeak = out3DData[row][col][1];

       }

       if(outPeak < out3DData[row][col][2]) {

           outPeak = out3DData[row][col][2];

       }

       if(outPeak < out3DData[row][col][3]) {

           outPeak = out3DData[row][col][3];

       }

    }

}

 

// normalization

double outputScale = ((double) inpeak) / ((double)outPeak);

for(int row=0; row<srcH; row++) {

    for(int col=0; col<srcW; col++) {

out3DData[row][col][1] = (int)(outputScale * out3DData[row][col][1]);

out3DData[row][col][2] = (int)(outputScale * out3DData[row][col][2]);

out3DData[row][col][3] = (int)(outputScale * out3DData[row][col][3]);

    }

}

 

五:本文没有提及的内容 –边界像素处理

没有处理边缘像素,对边缘像素的处理,有两个可以参考的方法

其一是直接填充法– 超出边界部分的以边界像素填充。

其二是线性插值法– 超出边界部分的以 i/row的像素填充。